S100A8-targeting siRNA enhances arsenic trioxide-induced myeloid leukemia cell death by down-regulating autophagy.

نویسندگان

  • Liangchun Yang
  • Minghua Yang
  • Hong Zhang
  • Zhuo Wang
  • Yan Yu
  • Min Xie
  • Mingyi Zhao
  • Liying Liu
  • Lizhi Cao
چکیده

Chemoresistance has become a major obstacle to the successful treatment of leukemia. Autophagy, a regulated process of degradation and recycling of cellular constituents, has recently caught increasing attention for its roles in conferring resistance to various commonly used anticancer therapies. Here we showed that the member of the S100 calcium-binding protein family, S100A8, is a critical regulator of chemoresistance in the autophagy process. It positively correlated with the clinical status in childhood acute myeloblastic leukemia (AML) and it was released from leukemia cells after chemotherapy-induced cytotoxicity. Knockdown of S100A8 expression increased the sensitivity of leukemia cells to chemotherapy and apoptosis. Moreover, suppressing S100A8 expression decreased autophagy as evaluated by the increased expression of the autophagic marker microtubule-associated protein light chain 3 (LC3)-II, degradation of SQSTM1/Sequestosome 1 (p62) and formation of autophagosomes. Furthermore, stimuli that enhanced reactive oxygen species (ROS) promoted cytosolic translocation of S100A8 and thereby enhanced autophagy. S100A8 directly interacted with the autophagy protein Beclin1 displacing Bcl-2. These results suggest that S100A8 is a critical pro-autophagic protein that enhances cell survival and regulates chemoresistance in leukemia cells likely through disassociating the Beclin1-Bcl-2 complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide.

Arsenic trioxide (As(2)O(3)) exhibits potent antitumor effects in vitro and in vivo, but the precise mechanisms by which it generates such responses are not well understood. We provide evidence that As(2)O(3) is a potent inducer of autophagy in leukemia cells. Such induction of autophagy by As(2)O(3) appears to require activation of the MEK/ERK pathway but not the AKT/mammalian target of rapamy...

متن کامل

Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells.

Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activatio...

متن کامل

MYELOID NEOPLASIA Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid and/or arsenic trioxide represents a paradigm in targeted cancer therapy because these drugs cause clinical remission by affecting the stability of the fusion oncoprotein promyelocytic leukemia (PML)/ retinoic acid receptor alpha (RARA). The authors of previous studies have implicated the ubiquitin-proteasome pathway a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2012